发布日期:2024-02-23
浏览次数:1236
罗敏,男,博士,研究员,博士生导师。
地址:上海市浦东新区临港新城沪城环路999号 邮编:201306
Email:mluo@shou.edu.cn
教育背景
2010.09-2015.06 中国科学院广州地球化学研究所 地球化学博士学位
2013.10-2015.01 德国亥姆霍兹基尔海洋研究中心(GEOMAR) 联合培养博士
2006.09-2010.06 山东科技大学 地质工程学士学位
工作经历
2024.01-至今 上海海洋大学海洋科学与生态环境学院 研究员
2022.02-2024.01 上海海洋大学海洋科学学院 研究员
2019.09-2022.11 上海海洋大学海洋科学学院 副研究员
2018.12-2020.11 美国俄勒冈州立大学 访问学者
2016.06-2019.08 上海海洋大学海洋科学学院 讲师
2015.07-2016.05 中国科学院广州地球化学研究所 助理研究员
研究兴趣
深渊海底生源要素地球化学循环;俯冲带水岩作用和流体活动;海底冷泉区甲烷生物地球化学循环
成果和荣誉
2023年,入选上海市教委“曙光计划”
2021年,入选上海市科委青年科技英才“启明星计划”
2018年,入选上海市教委“晨光计划”
2017年,中国石油和化工自动化行业科技进步奖一等奖—海洋天然气水合物成藏分类与模拟技术(第2完成人)
2017年,入选上海市科委青年科技英才“扬帆计划”
2015年,中国科学院院长优秀奖
2013年,国家奖学金
学术兼职
New Zealand Journal of Geology and Geophysics副主编
Journal of Asian Earth Sciences、Frontiers in Marine Science专辑共同特邀主编
《地球化学》《海洋地质与第四纪地质》《海洋地质前沿》青年编委
中国海洋学会海底科学分会委员
发表论文
1.Xie, J., Zhang, G., Chen, C., Luo, M.*, Xu, H., Chen, D., Liu, R., Li, Y.*, Zhang, Q., Zhang, Y., Peng, X., He, L., Lin, T., Jiang G., 2024. Tracing organophosphate ester pollutants in hadal trenches─distribution, possible origins, and transport mechanisms. Environmental Science & Technology 10.1021/acs.est.3c09884.
2.Hu, T., Zheng, K., Luo, M.*, Xie, J., Qi, Y., Xu, Y., Chen, D*., 2024. Probing the optical and molecular properties of sedimentary dissolved organic matter in the laminated diatom mats from the southern Mariana Trench. Global and Planetary Change 234, 104386.
3.Xie, J.*, Chen, C., Luo, M., Peng, X., Lin, T., Chen, D., 2024. Hidden dangers: High levels of organic pollutants in hadal trenches. Water Research 251, 121126.
4.Hu, Y., Luo, M.*, Peckmann, J., Zhang, X., Chen, L., Feng, J., Liang, Q., Chen, D., Feng, D.*, 2023. Quantifying the extent of authigeinc carbonate formation is shallow marine sediments through a correlation between carbonate precipitation rate and sulfate flux. Geophysical Research Letters, 50, e2023GL104296.
5.Gong, S.*, Luo, M., Griffith, E.M., Peckmann, J., Liang, Q., Feng, D.*, 2023. Calcium isotopic fractionation during aragonite and high-Mg calcite precipitation at methane seeps. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2023.118419.
6.Xiao, X., Luo, M., Zhang, C., Zhang, T., Yin, X., Wu, X., Zhao, J., Tao, J., Chen, Z., Liang, Q.*, Dong, X.*, 2023. Metal-driven anaerobic oxidation of methane as an important methane sink in methanic cold seep sediments. Microbiology spectrum 11, e0533722.
7.Hu, T., Luo, M.*, Qi, Y., He, D., Chen, L., Xu, Y., Chen, D.*, 2023. Molecular evidence for the production of labile, sulfur-bearing dissolved organic matter in the seep sediments of the South China Sea. Water Research 233, 119732.
8.Luo, M.*, Hong, W. L., Torres, M. E., Kutterolf, S., Pank, K., Hopkins, J. L., Solomon, E. A., Wang, K. L., Lee ,H. Y., 2023. Volcanogenic aluminosilicate alteration drives formation of authigenic phases at the northern Hikurangi margin: Implications for subseafloor geochemical cycles. Chemical Geology 619, 121317.
9.Xie, J., Zhang, G., Wu, Q., Luo, M.*, Chen, D., Zhang, Y., He, L., Li, Y.*, Zhang, Q., Lin, T., Jiang, G., 2023. First evidence and potential sources of novel brominated flame retardants and BDE 209 in the deepest ocean. Journal of Hazardous Materials 448, 130974.
10.Niu, M., Deng, L., Su, L., Ruff, S. E., Yang, N., Luo, M., Qi, Q., Li, J.*, Wang, F*., 2023. Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea. Molecular Ecology 32, 660-679.
11.Luo, M.*, Li, W., Geilert, S., Dale, A. W., Song, Z., Chen, D., 2022. Active silica diagenesis in the deepest hadal trench sediments. Geophysical Research Letters 49, e2022GL099365.
12.Feng, J., Luo, M., Liang, J., Yang, S., Wang, H., Li, N.*, Sun, X.*, 2022. Possible links with methane seepage and gas hydrate dynamics inferred from authigenic barite records in the northern south china sea. Frontiers in Earth Science 10, 10:968504. doi: 10.3389/feart.2022.968504.
13.Zhang, X., Xu, Y.*, Xiao, W.*, Zhao, M., Wang, Z., Wang, X., Xu, L., Luo, M., Li, X., Fang, J., Fang, Y., Wang, Y., Oguri, K., Wenzhöfer, F., Rowden, A. A., Mitra, S., Glud, R. N., 2022. The hadal zone is an important and heterogeneous sink of black carbon in the ocean. Communications Earth & Environment 3, 25.
14.Hu, T., Luo, M.*, Xu, Y., Gong, S., Chen, D.*, 2021. Production of labile protein-like dissolved organic carbon associated with anaerobic methane oxidization in the Haima Cold Seeps, South China Sea. Frontiers in Marine Science, 8:797084. doi: 10.3389/fmars.2021.797084.
15.Hu, T., Luo, M.*, Wünsch, U.J., He, D., Gieskes, J., Xu, Y., Fang, J., Chen, D., 2021. Probing sedimentary DOM in the deepest sector of Earth's surface. Marine Chemistry, 237: 104033.
16.Lin, G., Luo, M.*, Chen, L., Chen, Y., Chen, D., 2021. Geochemistry and mineralogy of the sediments in the New Britain shelf-trench continuum, offshore Papua New Guinea: Insights into sediment provenance and burial in hadal trenches. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103621.
17.Xu, Y.#, Li, X.#,Luo, M.#, Xiao, W., Fang, J., Rashid, H., Peng, Y., Li, W., Wenzhöfer, F., Rowden, A.A., Glud, R.N., 2021. Distribution, Source, and Burial of Sedimentary Organic Carbon in Kermadec and Atacama Trenches. Journal of Geophysical Research: Biogeosciences, 126(5): e2020JG006189.
18.Chen, P., Zhou, H., Huang, Y., Xie, Z., Zhang, M., Wei, Y., Li, J., Ma, Y., Luo, M., Ding, W., Cao, J., Jiang, T., Nan, P., Fang, J.*, Li, X.*, 2021. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biology, 22(1): 207.
19.Xu, Y.*, Jia, Z., Xiao, W.*, Fang, J., Wang, Y., Luo, M., Wenzhöfer, F., Rowden, A.A., Glud, R.N., 2020. Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: Distribution, source and environmental implications. Organic Geochemistry, 147: 104079.
20.Luo, M.*, Torres, M.E., Hong, W.-L., Pape, T., Fronzek, J., Kutterolf, S., Mountjoy, J.J., Orpin, A., Henkel, S., Huhn, K., Chen, D., Kasten, S., 2020. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin. Earth and Planetary Science Letters, 541, doi:10.1016/j.epsl.2020.116288.
21.Luo, M.*, Torres, M.E., Kasten, S., Mountjoy, J.J., 2020. Constraining the age and evolution of the Tuaheni Landslide Complex, Hikurangi Margin, New Zealand using pore-water geochemistry and numerical modeling. Geophysical Research Letters, 47(11): e2020GL087243.
22.Barnes, P.M.*, Wallace, L.M., Saffer, D.M., Bell, R.E., Underwood, M.B., Fagereng, A., Meneghini, F., Savage, H.M., Rabinowitz, H.S., Morgan, J.K., Kitajima, H., Kutterolf, S., Hashimoto, Y., Oliveira, C.H.E.d., Noda, A., Crundwell, M.P., Shepherd, C.L., Woodhouse, A.D., Harris, R.N., Wang, M., Henrys, S., Barker, D.H.N., Petronotis, K.E., Bourlange, S.M., Clennell, M.B., Cook, A.E., Dugan, B.E., Elger, J., Fulton, P.M., Gamboa, D., Greve, A., Han, S., Hüpers, A., Ikari, M.J., Ito, Y., Kim, G.Y., Koge, H., Lee, H., Li, X., Luo, M., Malie, P.R., Moore, G.F., Mountjoy, J.J., McNamara, D.D., Paganoni, M., Screaton, E.J., Shankar, U., Shreedharan, S., Solomon, E.A., Wang, X., Wu, H.-Y., Pecher, I.A., LeVay, L.J., 2020. Slow slip source characterized by lithological and geometric heterogeneity. Science Advances, 6(13): eaay3314.
23.Feng, J., Li, N., Luo, M.*, Liang, J., Yang, S., Wang, H., Chen, D., 2020. A quantitative assessment of methane-derived carbon cycling at the cold seeps in the northwestern South China Sea. Minerals, 10, 256; doi:10.3390/min10030256.
24.Chen, L., Luo, M.*, Dale, A.W., Rashid, H., Lin, G., Chen, D., 2019. Reconstructing organic matter sources and rain rates in the southern West Pacific Warm Pool during the transition from the deglaciation period to early Holocene. Chemical Geology, 529, https://doi.org/10.1016/j.chemgeo.2019.119291.
25.Feng, J., Yang, S., Wang, H., Liang, J., Fang, Y., Luo, M.*, 2019. Methane Source and Turnover in the Shallow Sediments to the West of Haima Cold Seeps on the Northwestern Slope of the South China Sea. Geofluids, 2019, https://doi.org/10.1155/2019/1010824.
26.Luo, M., Gieskes, J., Chen, L., Scholten, J., Pan, B., Lin, G., Chen, D.*, 2019. Sources, degradation, and transport of organic matter in the New Britain Shelf‐Trench continuum, Papua New Guinea. Journal of Geophysical Research: Biogeosciences, 124. https://doi.org/10.1029/2018JG004691.
27.Zhang, Y., Luo, M.*, Hu, Y., Wang, H., Chen, D.*, 2019. An areal assessment of subseafloor carbon cycling in cold seeps and hydrate-bearing areas in the northern South China Sea. Geofluids, 2019, https://doi.org/10.1155/2019/2573937.
28.Hu, Y., Luo, M.*, Liang, Q., Chen, L., Feng, D.*, Yang, S., Liang, J., Chen, D., 2019. Pore fluid compositions and inferred fluid flow patterns at the Haima cold seeps of the South China Sea. Marine and Petroleum Geology, 103, 29-40.
29.Guan, H.*, Chen, L., Luo, M., Liu, L., Mao, S., Ge, H., Zhang, M., Fang, J., Chen, D., 2019. Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench. Geoscience Frontiers, 10, 351-360.
30.Luo, M.*, Glud, N.R., Pan, B.*, Wenzhöfer, F., Xu, Y., Lin, G., Chen, D. 2018. Benthic carbon mineralization in hadal trenches: Insights from in-situ determination of benthic oxygen consumption. Geophysical Research Letter, 45, 2752-2760.
31.Luo, M., Algeo, T.J., Chen, L., Shi, X., Chen, D.*, 2018. Role of dust fluxes in stimulating Ethmodiscus rex giant diatom blooms in the northwestern tropical Pacific during the Last Glacial Maximum. Palaeogeography Palaeoclimatology Palaeoecology, 511, 319-331.
32.Luo, M., Algeo, T.J., Tong, H., Gieskes, J., Chen, L., Shi, X., Chen, D.*, 2018. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity. Deep-Sea Research Part II: Topical Studies in Oceanography, 155, 70-82.
33.Liu, R., Wang, L., Liu, Q., Wang, Z., Li, Z., Fang, J.*, Zhang, L., Luo, M., 2018. Depth-resolved distribution of particle-attached and free-living bacterial communities in the water column of the New Britain Trench. Frontiers in Microbiology, 9, 1-12, doi:10.3389/fmicb.2018.00625.
34.Feng, J., Yang, S.*, Liang, J., Fang, Y., He, Y., Luo, M.*, Chen, D., 2018. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang basin of the southern South China Sea. Journal of Asian Earth Sciences, 168, 77-86.
35.Hu, Y., Luo, M., Chen, L., Liang, Q., Feng, D., Tao, J., Yang, S., Chen, D.*, 2018. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: Porewater geochemistry and numerical model constraints. Journal of Asian Earth Sciences, 168, 87-95.
36.Luo, M., Gieskes, J., Chen, L., Shi, X., Chen, D.*, 2017. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches. Marine Geology, 386, 98-106.
37.Luo, M.*, Dale, A.W., Haffert, L., Haeckel, M., Koch, S., Crutchley, G., De Stigter, H., Chen, D., Greinert, J., 2016. A quantitative assessment of methane cycling in Hikurangi Margin sediments (New Zealand) using geophysical imaging and biogeochemical modeling. Geochemistry, Geophysics, Geosystems 17, 4817-4835.
38.Luo, M., Dale, A.W., Wallmann, K., Hensen, C., Gieskes, J., Yan, W., Chen, D.*, 2015. Estimating the time of pockmark formation in the SW Xisha Uplift (South China Sea) using reaction-transport modeling. Marine Geology, 364, 21-31.
39.Luo, M., Chen, L., Tong, H., Yan, W., Chen, D.*, 2014. Gas hydrate occurrence inferred from dissolved Cl− concentrations and δ18O values of pore water and dissolved sulfate in the shallow sediments of the pockmark field in southwestern Xisha Uplift, northern South China Sea. Energies, 7, 3886-3899.
40.Luo, M., Huang, H., Zhang, P., Wu, Q., Chen, D.*, 2014. Origins of gas discharging from the Qiangtang Basin in the northern Qinghai–Tibet Plateau, China: Evidence from gas compositions, helium, and carbon isotopes. Journal of Geochemical Exploration, 146, 119-126.
41.Luo, M., Chen, L., Wang, S., Yan, W., Wang, H., Chen, D.*, 2013. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea. Marine and Petroleum Geology, 48, 247-259.
42.郑旻,罗敏*,潘彬彬,陈多福. 海洋沉积物溶解氧消耗研究进展. 地球科学进展, 2023, 38(3), 236-255.
43.宋子君,孟凡祎,李维鼎,陈琳莹*,罗敏. 马里亚纳海沟沉积物物源示踪和沉积环境分析. 海洋地质与第四纪地质, 2022, 42(4), 84-95.
44.孔丽茹,罗敏*,陈多福. 新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr 同位素证据. 海洋地质与第四纪地质, 2021, 41(6), 1-9.
45.胡廷苍,张艳平,胡钰,罗敏,陈多福*. 南海神狐海域水合物发育区浅表层沉积物甲烷周转定量模拟. 海洋地质与第四纪地质, 2020, 40(3), 99-108.
46.吴能友*,孙治雷,卢建国,蔡峰,曹红,耿威,罗敏,张喜林,李清,尚鲁宁,王利波,张现荣,徐翠玲,翟滨,李鑫,龚建明,胡钰,林根妹. 冲绳海槽海底冷泉-热液系统相互作用. 海洋地质与第四纪地质, 2019, 39(5), 1-13.
47.林刚,陈琳莹,罗敏,陈多福*. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示. 海洋地质与第四纪地质, 2019, 39(3), 1-16.
48.林刚,陈琳莹,罗敏,陈多福*. 西太平洋暖池核心区新不列颠海沟有机质来源及碳酸盐含量变化. 地球化学, 2019, 48(2), 138-148.
49.陈琳莹,罗敏*. 南海西沙西南海底麻坑区天然气水合物发育的孔隙水地球化学证据. 地球化学, 2017, 46(6), 557-566.
50.张艳平,罗敏,胡钰,陈多福*. 海底有机质早期成岩和甲烷缺氧氧化数值模型研究进展. 海洋地质与第四纪地质, 2017, 17(5), 109-121.
51.梁华催,梁前勇,胡钰,罗敏,曹运诚,张文进,陈多福*. 南海东沙海域浅表层柱状沉积物孔隙水地球化学特征及对冷泉流体活动的指示. 地球化学, 2017, 46(4), 333-344.
52.冯俊熙,罗敏,胡钰,陈多福*. 海底蛇纹岩化伴生的碳酸盐岩研究进展. 矿物岩石地球化学通报, 2016, 35(4), 789-799.
53.关永贤,罗敏,陈琳莹,王淑红,颜文,王宏斌,陈多福*. 南海西部海底巨型麻坑活动性示踪研究. 地球化学, 2014, 43(6), 628-639.
54.黄华谷,罗敏,张鹏,吴青柏,陈多福*. 青藏公路沿线地表渗漏气体地球化学及其来源. 天然气地球科学, 2014, 25(6), 874-881.
55.罗敏,王宏斌,杨胜雄,陈多福*. 南海天然气水合物研究进展. 矿物岩石地球化学通报, 2013, 32(1), 56-69.
罗敏,吴庐山,陈多福*. 海底麻坑研究现状及进展. 海洋地质前沿, 2012, 28(5), 35-44.
科研项目
1. 2021.07-2024.06,上海市青年科技英才启明星计划项目:深渊海底沉积物溶解有机质荧光光谱特征研究,40万元,主持
2. 2021.01-2024.12,国家自然科学基金面上项目:新西兰Hikurangi俯冲带孔隙流体来源和水岩作用示踪研究:对流体活动和慢滑移事件的指示,60万元,主持
3. 2018.07-2021.06,国家重点研发计划“深海关键技术与装备”专项“中国海域冷泉系统演变过程及其机制”项目课题六子课题2,70万元,主持
4. 2018.01-2020.12,国家自然科学基金青年基金项目:近陆深渊区海底沉积有机质源汇研究-以新不列颠海沟为例,25万元,主持
5. 2017.05-2020.04,上海市青年科技英才扬帆计划项目:马里亚纳海沟南部沉积物有机质来源、分布和堆积以及末次盛冰期沉积古环境示踪研究,20万元,主持
6. 2017.04-2020.03,青岛海洋科学与技术国家实验室开放基金项目:马里亚纳海沟和新不列颠海沟有机质来源、降解和堆积对比研究,100万元,主持
7. 2021.11-2023.10,国际大洋发现计划(IODP)386航次航行资助,6万元,主持
8. 2018.06-2020.05,国际大洋发现计划(IODP)375航次航行资助,6万元,主持